
liveinterfaces.org ICLI
PORTO
2018

Trans-Disciplinary
Tools for
Collaborative,
Choreographed, and
Embodied Audio-
Visual Live Coding

Renick Bell1
renick@gmail.com

Joana Chicau2
joanabcq@gmail.com

1Tokyo, Japan
2Rotterdam, The Netherlands

Abstract
Seeking balanced and mutual interac-
tion, the authors designed and imple-
mented tools to connect a live coding
system for audio built in Haskell with
Javascript tools for live coding brows-
er-based visuals to enable a collabora-
tive audio-visual performance. Each
system generates and emits OSC mes-
sages through functions developed by
the authors and triggered by preexisting
functions in those systems. The sys-
tems also gained subsystems for
receiving incoming messages and mod-
ifying system state according to those
messages. Means for displaying trans-
mitted data were also implemented,
allowing audiences greater insight into
performer interactions. The system was
designed to enhance the possibility of
equal dialogue between the performers
and avoid disastrous changes to a part-
ner’s system state. It was developed
following an ongoing research and rec-
ollection of musical and choreographic
scores that reference principles of
non-linear composition, non-hegem-
onic time and space constructs, and
techno-feminist perspectives.

Keywords
Live coding
Audio-visual performance
Collaboration
Choreography
Web environments
Techno-feminism
Improvisation

Open-access article distributed under the Creative Commons
Attribution 3.0 Unported License, which permits unrestricted
use, distribution, and reproduction in any medium, provided
the original author and source are credited.

 I
CL
I
PO
RT
O
20
18

17
4 Introduction

This research focused on techniques for achiev-
ing a philosophically-grounded collaborative
improvisation between a live-coded visual
system and a live-coded audio system and the
corresponding new software tools required
to support that improvisation. This paper first
explains the philosophical basis for the col-
laboration which underlies the techniques and
tools, then describes the technical goals which
the authors targeted. It proceeds to examine
existing works which informed this research.
The two systems involved are described briefly,
followed by a more technical discussion of how
the two systems were made to interact and
the tooling necessary for that interaction. The
paper concludes with a brief analysis of the
results of this research.

1.Philosophical Intention

The authors began this research with the inten-
tion of collaborating in a way that reflects devel-
opments in theory on feminism, interfaces, and
live coding to achieve the maximum balance in
collaboration possible while still achieving par-
ticular technical and aesthetic goals.

Live coding performances, like other forms
of improvisation, are a constant negotiation
between different forms of agency and comput-
ers. Schroeder writes that “Live coding practi-
tioners ask the audience to share the risk and
the fascination of live making. By emphasising
the risk of such making, these practices deliber-
ately expose the body in flux, the body in con-
stant negotiation with the environment and the
instrument, itself in flux.” (2009) While acknowl-
edging and accepting this risk, certain technical
choices can be made to reduce some of those
risks, correspondingly granting additional free-
dom in different areas.

It is also important to consider the role of the
environment, as described by Rodaway: “... The
concept of ecological optics (and ecological
formulations of other sensuous information)

emphasises the role of the environment itself in
structuring optical (auditory, tactile, etc.) stim-
ulation. Potential sources of stimulation pass
through the environment and are encoded with
the structure of that environment as they are
modified in their passage. It is this structured
stimulus which the sense organ ‘read’. There-
fore, the environment becomes a source of
information, not merely raw data.” (Rodaway,
2002) In a collaborative performance, the other
performer can also be seen as part of a per-
former’s environment.

The authors sought to reflect and practice
alternative uses of technologies and the pur-
suit of new resolutions. Every decontextualized
materiality may be immediately re-contextual-
ized inside another already existing paradigm
or interface. In The Interface Effect, Galloway
writes that the interface is “not a thing, an inter-
face is always an effect. It is always a process
or translation” (2013) Users may completely
depend on their conditioning every time they
deal with data, so the possibility of escaping the
normative or habitual interpretation of inter-
faces was of interest. The authors intended to
include the activity of the other in a deeper way
than simply reacting to how that performance
is perceived through the five senses. In this
way, the data flow from the other as part of the
total environment becomes a central part of the
structure of each performer’s output.

The authors aimed to expose the process,
making digital literacy and experimental tools
part of their strategies. TOPLAP has long
called for live coders to “show us your screens”
(McLean, 2010). The authors intended to take
this still-radical concept of the openness of
the performer further by showing how the
data of the other is actively affecting each per-
former’s activity.

This approach of each system modifying the
other is built on feminist pursuit of “decen-
tered, multiple, participatory practice(s) in which
many lines of flight coexist.” (Galloway, 2013)
The platforms and tools chosen to integrate this

 I
CL
I
PO
RT
O
20
18

17
5performance, for example the OSC feature later

explained in detail, allow for constant and imme-
diate interactions, intending to remove hierarchy,
which necessarily means eliminating patriar-
chy, and reflecting the fact that influencing inter-
actions necessarily involve being influenced in
turn. Rather than an enforced equalising of roles
so that there is a one-to-one matching of influ-
ence, the authors sought to achieve a balance of
control appropriate to each situation. Through
the data-level connection between the systems,
a dialogue can be carried out, and an additional
dimension of performativity is opened.

Through the appropriation of interfaces not orig-
inally intended for performance, as well as the
creation of new vocabularies that form plural
and therefore more inclusive views, feminist
practices were in part brought into the project.
Allowing possibly the world’s most common
interface, the web browser, to communicate
with a very specific interface in the form of the
custom Haskell interface, shows that inclusiv-
ity. Using feminist perspectives in the interface
design means redefining what efficiency and
functionality mean.

2.Technical Interaction Goals

There were several key concerns in develop-
ing the interaction and tools to make it possible.
The principal concern was to enable a balanced
interaction between performers; exactly what

“balanced” means depends on the demands of
particular situations. In accordance with the
goal of allowing the other’s data to become
information for each performer’s system, meth-
ods were required to pass that data and then
make it meaningful.

Some additional concerns related to the inter-
action included how the performers could
switch roles. Different types of activity levels
were targeted: being active, being passive,
being active simultaneously, having multiple
agents active while the performers themselves
are not, and so on.

The authors also examined how to avoid demol-
ishing a co-performer’s work when domain
knowledge was insufficient, which in part
reflects the de-emphasis on skill, removing
some risks in order to allow more emphasiz-
ing mutually supporting communication. This
required the authors to consider strategies and
means for mapping data flows and then ways to
quickly recover when unwanted state modifica-
tions take place.

The authors have not always relied on the same
set of rules and interactions between the two
systems. For example, wait times in one system
might be remapped to spatial parameters in
another, or an array of strings might be rema-
pped to a graph of parameter values in another.
The authors sought as much freedom of mapping
as possible within the encompassing technical
constraints of the systems involved. Messages
could be urgent and acted upon immediately, or
they could be deferred and acted upon when the
context became appropriate.

The authors were also keen to avoid a mechan-
ical correspondence between the two systems.
For example, it was not our intention to make
the visual system pulse perfectly in sync with
the rhythms presented by the audio system.
Deep ways to map the data were sought, yet
some mappings that would still be obvious to
the audience were also sought so that the audi-
ence would not just be aware of the interaction
between the two performers but also might be
able to follow it to at least a limited degree.

The goal of openness described above led
to exploration of ways to reveal to the audi-
ence the nature of the interaction as it unfolds
through a performance. This required display
of those flows and their effects for not just the
performers but also to the audience. Because
the interfaces of the two systems were differ-
ent, different means for displaying those flows
were required.

 I
CL
I
PO
RT
O
20
18

17
6 Finally, all of the above goals had to be reached

while still making sure that the tools function
adequately for real-time performances, meaning
avoiding unacceptable jitter, delays, glitches or
other unwanted system malperformance.

3.Literature review

Collaborative live coding is not new. A number
of performers have developed group practices
and systems to enable their audio performances.
Those include groups such as:

• The Hub (Gresham-Lancaster, 1998)
• OFFAL, “a non-hierarchical collective [aiming]

to connect an international group of women
engaged in electronic music by developing
technological systems and organisational
structures that facilitate collaboration.” (2018)

• BiLE (Birmingham Laptop Ensemble) (2018)
• Benoit and the Mandelbrots, who use their

own BenoitLib and MandelHub (Borgeat, 2010)
• Various groups using David Ogborn’s

collaborative editor Estuary (Ogborn, 2017)
• Live coding group Glitchlich, which used

SuperCollider and their own bespoke tools
written in C++

Some systems allow collaboration between
audio and visual live coders, such as Charlie
Roberts’s Gibber (2012). There have been
some live coders whose practices involve
choreography, such as the work of Kate Sicchio
(2018) and some pieces by Marije Baalman
(2018). However, the authors are unaware of
data sharing via OSC between two different
live coding environments for the purpose
of executing a collaborative audio/visual
performance with choreography.

4.Audio System

The live coding system in Haskell (Jones, 2002)
uses a text editor and ghci with a SuperCollider
audio back-end (the SuperDirt sampler, which
is a port of Alex McLean’s Dirt sampler to Super-
Collider done by Julian Rohrhuber (McLean,
2018)), to which the system communicates

through OSC (Wright, 2005). OSC is handled
by the hosc package written by Rohan Drape
(2010). The audio system uses more than 10
autonomous processes which, in addition to
triggering audio synthesis events, also change
data used in pattern generation, synthesis, and
the state of the other autonomous processes.
The processes refer to a set of shared data
stores containing tables of rhythms, density
patterns, sample patterns, parameter patterns,
and so on. Each process runs in a loop, execut-
ing a side-effect-producing function and then
waiting according a timing function each refers
to, as long as it is active. Whether it is active
or not is determined either by the operator or
another autonomous process which has been
assigned a function to start and pause other
autonomous processes.

5.Visual System

The visual system involves a choreographic
score written in web programming languages
(HTML, CSS, JavaScript). The performer uses the
browser (Firefox) console to write functions that
draw on choreographic concepts and use both
local files and already existing interfaces, such
as Google search, to explore different function-
alities of online interfaces. The performer live
codes in Javascript in the web browser, embed-
ding new canvas elements and manipulating
various visual elements text, images, modify-
ing in real time sourced web pages, and reading
from JSON data stored on the local disk. OSC is
handled by Node.js and the osc.js library (Clark,
2014).

6.Inter-system Communication and
Interaction System

To achieve the collaboration goals described
above, some tools for dealing with OSC mes-
sages were developed. OSC messages were
designed according the approach described
above. The messages are structured to show
where they come from, in the following manner:

 I
CL
I
PO
RT
O
20
18

17
7/(audio or visual)/processA/messageType [

…(an optional array of floats or strings
to be received by a system)...]

“Audio” is replaced with “visual” in the case of
messages coming from the graphical system to
the audio system. With such a message struc-
ture, it is possible for each system to respond
to the data in an appropriate manner as deter-

mined by the coder/performer. The message
types reflect where the data was taken from.

Messages belong to one of three types: trig-
ger messages, arrays of numbers, or arrays of
strings. The effect is that one performer has
passed to the other a critical piece of its inner
activity, which the other is free to react to in
any way. For example, the audio system might

Figure 1. Audio system

Figure 2. Visual system

 I
CL
I
PO
RT
O
20
18

17
8 send a “rhythmTableRow” message, which is

followed by the delta values contained in the
selected row of a selected rhythm table. The
coder of the visual system is then free to use
that data in any manner deemed useful to the
performance, such as using these delta times
to determine refresh rates to a line of text
which changes periodically.

Some examples messages include:

/audio/playerKick/trigger

/audio/density [0,1,16,1.4,20,1.2,
28,1.7,31.9,1.9] <- a linked listed
displayed as a flattened array

/visual/browserWindow1/trigger

/visual/browserWindow1/waitTimes
[1,1,2,1,1,3]

/visual/searchStrings [“The center
of”, “Spheres”, “Equidistant”]

Mapping is flexible and can be decided at perfor-
mance time by the performer so that it becomes
an element of the improvisation. However it is
also possible to pre-map incoming data before
the performance, and the preparation of various
mapping functions before performing makes use
of the data in performance safer; in rehearsals
safe mappings can be decided that would allow
those messages to be passed and executed

without disastrous changes in system state or
otherwise negatively influencing the perfor-
mance. Users are able to map the messages so
that critical data is protected and that the effects
produced are within a safe range.

Some functions were developed in order to
reshape data for different uses, such as normal-
izing values to usable ranges or converting string
data to numeric data and vice versa. Received
messages can also be handled in two different
styles: immediate dispatch or dispatch accord-
ing to sequence. The meaning of the former
should be clear; in the case of the latter, mes-
sages are queued and dispatched in order of
arrival according to the timing of a sequence
determined by the operator of the audio system.

An OSC listening/sending subroutine for the
audio system was implemented using hosc.
Received messages are interpreted by the lis-
tener and displayed in the interpreter, which is
visible to the audience in one terminal. Those
received messages then trigger corresponding
functions which in turn modify or replace the
various stateful data of the system. For example,
a trigger message can be used to force a change
in rhythms, or wait times can be interpreted as
a graph for density to be used by some or all of
the autonomous processes. An OSC listener for
the visual system was implemented in osc.js. It
involves a Node.js-based listener which receives
messages from the network and passes them to
the visualization system running in the browser.

Figure 3. Inter-system communication

 I
CL
I
PO
RT
O
20
18

17
9The visual system might map incoming mes-

sages to things like delta times in page anima-
tion, spacing of graphical items, or angles used
to skew graphical items.

At the same time, the audio system sends OSC
messages to the visual system. Autonomous
processes following the same rhythms and
densities as the processes triggering sample
playback send messages via OSC to the visual
system, where they are received by a corre-
sponding listening server. The functions for
doing so are designed so that different pro-
cesses can send different types of messages
and at different timing. The visual system has
OSC-message-passing functions built into
standard functions used for modifying the
browser environment so that through normal
operation, OSC messages are passed to a node-
based server which then sends the messages via
OSC to the audio system.

Revealing the interaction required using mean-
ingful naming conventions and crafting mes-
sages to be shown in always-visible post win-
dows. Those messages also required particular
highlighting so that they would not be lost amidst
the data present in those post windows.

The visual system displays the received mes-
sages in the DOM as alerts or as text messages
in the browser to highlight the communica-
tion, while special text formatting was used for
received messages in the Haskell interpreter
so that those messages would be more visually
emphasized than other messages that appear
in that window.

7.Evaluation

Basic technical goals were achieved. While
there are some advantages to including the
functions to send OSC messages to the partner
system in embedded functions that are trig-
gered during standard system operation, it was
decided finally not to do so in order to allow for
a more flexible and therefore timing-appropri-
ate usage of the message-passing functions. It

is still challenging to adapt to unfamiliar data
from the other system in real-time. It is worth
investigating whether this is a matter of prac-
tice or if technical solutions can reduce the
difficulty of doing so. The authors settled on a
simplified message system in which the origin
and a string argument are passed. This was
done for two reasons. The first of which was
that the specification of the more complex mes-
sage in the performance was too demanding
and error-prone; becoming familiar with a more
complex form would take more rehearsal time
than was available for the initial peformance
using the system. In addition, the authors
decided on an explicit shared vocabulary for
conceptual and aesthetic reasons. This shared
vocabulary then was given a behaviour in each
system. For example, “spacing” in the visual
system increased the spacing between letters
in text, while in the audio system it increased
the distance in time between events. These
were defined in advance so that they could be
used more immediately in the performance
according to timing chosen by the users. Most
in-performance mapping was dropped for the
performance in order to keep the pace of the
performance fast enough to meet aesthetic
goals and avoid errors. If mapping is to be done
dynamically in a performance, faster methods
will be required. Queueing of messages was
also not used in order to maintain the trans-
parency of one performer passing a message
to the other and then immediately causing a
change in the other system.

Conclusion

The authors intend to use this system for a
number of performances, testing it further to
determine whether it achieves the goals out-
lined above, how those goals might be revised,
and how the system can then be adapted
further to meet those goals. The implemen-
tation also remains very specific to the two
systems involved; future work includes gen-
eralizing the system and documenting it so
that it could be more easily used by others for
their performances.

 I
CL
I
PO
RT
O
20
18

18
0 Baalman, Marije. “Code LiveCode Live.” n.d.

Accessed February 28, 2018. https://
marijebaalman.eu/projects/code-livecode-live.
html.

Borgeat, Patrick. (2010) 2017. BenoitLib:
SuperCollider Extensions Used by Benoît and the
Mandelbrots. SuperCollider. https://github.com/
cappelnord/BenoitLib.

Clark, Colin. (2014) 2018. Osc.Js: An Open Sound
Control (OSC) Library for JavaScript That Works
in Both the Browser and Node.Js. JavaScript.
https://github.com/colinbdclark/osc.js.

Drape, Rohan. 2010. Hosc 0.8.
Galloway, Alexander R. 2012. The Interface Effect.

Polity.
Gresham-Lancaster, Scot. 1998. “The Aesthetics

and History of the Hub: The Effects of Changing
Technology on Network Computer Music.”
Leonardo Music Journal 8: 39. https://doi.
org/10.2307/1513398.

Jones, Simon P., ed. 2002. Haskell 98 Language and
Libraries: The Revised Report. http://haskell.org/.
http://haskell.org/definition/haskell98-report.
pdf.

“Manifesto | BiLE.” n.d. Accessed February 28, 2018.
http://www.bilensemble.co.uk/manifesto/.

McLean, Alex and Rohrhuber, Julian.
“Musikinformatik/SuperDirt.” n.d. Accessed
February 28, 2018. https://github.com/
musikinformatik/SuperDirt.

McLean, Alex. 2010. “TOPLAP Website.” TOPLAP.
September 2010. http://www.toplap.org/index.
php/Main_Page.

“OFFAL by Offal.” n.d. Accessed February 28, 2018.
https://offal.github.io/.

Ogborn, David, Jamie Beverley, Luis Navarro del
Angel, Eldad Tsabary, and Alex McLean. n.d.
2017. “Estuary: Browser-Based Collaborative
Projectional Live Coding of Musical Patterns.”

Roberts, Charlie, and JoAnn Kuchera-Morin. 2012.
“Gibber: Live Coding Audio in the Browser.” In
ICMC.

Rodaway, Paul. 2002. Sensuous Geographies: Body,
Sense and Place. Routledge.

Schroeder, Franziska, and Pedro Rebelo. 2009.
“The Pontydian Performance: The Performative
Layer.” Organised Sound 14 (2): 134–141

Sicchio, Kate. “Sound Choreographer Body Code
– Kate Sicchio.” n.d. Accessed February 28,
2018. http://blog.sicchio.com/works/sound-
choreographer-body-code/.

Wright, Matthew. 2005. “Open Sound Control: An
Enabling Technology for Musical Networking.”
Organised Sound 10 (3): 193–200.

