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Abstract.

We present a sonic interaction design approach that makes use of deep reinforcement learning to explore
many mapping possibilities between input sensor data streams and sound synthesis parameters. The
user can give feedback to an artificial agent about the mappings proposed by the latter while playing
the synthesiser and trying the new mappings on the fly. The design approach we adopted is inspired
by the ideas established by the interactive machine learning paradigm, as well as by the use of artificial
agents in computer music for exploring complex parameter spaces. We refer to this interaction design
approach as Assisted Interactive Machine Learning (AIML). We describe the architecture of an AIML
system prototype, a typical workflow for interacting with the agent and obtain gesture-sound mappings.
We then present feedback data collected during a demonstration and discuss perspectives for developing
the AIML paradigm further, pointing out current limitations. In light of the feedback obtained and the
considerations arisen following the use of the system in a multimedia performance piece, we suggest that
the implementation and evaluation of new features should take into consideration established creative
workflows and take place close to actual artistic practice.

Keywords. Gestural Interaction, Interactive Machine Learning, Reinforcement Learning, Artificial
Agents, Sonic Interaction Design

Introduction
Gesture-sound Interaction Design and Interactive Machine Learning
Designing gestural interactions between body movement and sound synthesis is a multifaceted process.
At its core, it takes place through the definition of mapping functions between input signals (usually
obtained through some motion sensing device) and sound synthesis parameters (Hunt and Wanderley,
2003). Adopting an effective mapping strategy is one of the key factors affecting the expressive potential
of a live interface, and as the spaces defined by input signals and synthesis parameters become more
highly-dimensional and heterogeneous, designing mapping structures can be an increasingly complex
task, with many possible solutions (Van Nort et al., 2014). In addition to the relatively abstract realm of
designing mappings, researchers on gesture-sound interaction draw upon several fields of inquiry. The
results of quantitative studies of music-related body motion based on sound-tracing experiments were
indicated as a useful source for defining mappings in musical interfaces (Nymoen et al., 2013). Informed
by environmental psychology, the notion of sonic affordance was introduced to look at how sound may
invite action, and how this could potentially aid the design of gestural interfaces (Altavilla et al., 2013).
Qualitative observations of the gestural aspects of traditional musical instruments have been looked at
to inform mapping strategies (Visi et al., 2014), as well as to develop musical practices where bodily
gestures are seen as fundamental compositional elements (Östersjö, 2016).
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Machine learning frameworks for interacting with sound synthesis environments (Fiebrink et al., 2009)
have brought about sonic interaction design approaches where mappings are not explicitly defined and
manually coded, but are “shown” – or given by demonstration – to a system capable of “learning” them
(Françoise et al., 2014). The widespread adoption of such interactive gesture-sound mapping approaches,
facilitated by the accessibility of software tools such as the Wekinator (Fiebrink and Cook, 2010), lead to
the establishment of the Interactive Machine Learning (IML) interaction design paradigm. The machine
learning algorithm is thereby considered as an interface between humans and computers, a creative
tool that, with its own affordances and constraints, supports the process of musicians and sonic artists
(Fiebrink and Caramiaux, 2018).

The increasing detail offered by motion sensing technologies, and the complexity of sound synthesis
engines creates the opportunity for exploring the numerous, non-obvious ways in which these domains can
be interfaced. The user-centric interface design methods enabled by machine learning delineate a scenario
in which exploring gestural mappings can be done interactively, intuitively, and with the assistance of
algorithms that become part of the creative tool kit of musicians.

Artificial Agents for Parameter Space Exploration in Computer Music
Modern sound synthesis techniques are often characterised by a high number of parameters one can
manipulate in order to make different sounds. Whilst these afford vast synthesis possibilities, exploring
the resulting extensive parameter spaces may be a challenging task, which can be particularly difficult
to accomplish by manipulating every parameter by hand. In computer music, mathematical models
inspired by biological processes have long been used to explore the possibilities afforded by sound synthesis
techniques. To provide a few examples, Miranda (1995) used cellular automata (a model of biological self
reproduction) to generate a large amount of sonic particles that form complex sound events. Dahlstedt
(2001) proposed a system based on genetic algorithms where the users listen to the sounds generated by
the software and select those they find more interesting. Following an evolutionary model, the system then
proposes new sounds by “mating”, “mutating”, and “evolving” the sounds that were selected by the user
in previous generations. Genetic algorithms were also adopted later by Yee-King (2016) to explore timbre
spaces in sound synthesis. The same author and collaborators later applied several machine learning
and optimisation techniques to automatically programme a synthesiser to match a given target sound
as accurately as possible (Yee-King et al., 2018). An approach based on sound matching and genetic
algorithms informed by the work of Horner et al. (1993) was also adopted by David Griffiths and the
FoAM network in a collaboration with the electronic music artist Aphex Twin.1

Reinforcement learning is an area of machine learning in which artificial agents are programmed to take
actions in an environment defined by a set of parameters. Their goal is to maximise the positive feedback
– or rewards – they are given by a human (or by another algorithm) observing the outcome of their actions.
Deep reinforcement learning approaches – such as the Deep TAMER algorithm – leverage the power
of deep neural networks and human-provided feedback to train agents able to perform complex tasks
(Warnell et al., 2018). Recently, Scurto et al. (2019) implemented the Deep TAMER algorithm to design
artificial agents that allow to interactively explore the parameter spaces of software synthesisers.

We present a system that makes use of deep reinforcement learning in the form an artificial agent to
explore different mappings between an input device and a sound synthesis engine. The user can give
positive or negative feedback to the agent about the proposed mapping while playing with the interface,
and try new mappings on the fly. The design approach we adopted is inspired by the ideas established by
the IML paradigm, as well as by the use of artificial agents in computer music for exploring complex
parameter spaces. We call this interaction design approach Assisted Interactive Machine Learning (AIML).

Method
The system is designed to interactively explore the motion-sound mappings proposed by the artificial
agent. This iterative collaboration can be summarised in four main steps:

1. Sound design: the user authors a number of sounds by editing a set of salient synthesis parameters;
1The result of the collaboration between FoAM and Aphex Twin is described here: https://fo.am/activities/midimutant/
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2. Agent exploration: the agent proposes a new mapping between the signals of the input device and
the synthesis parameters based on previous feedback given by the user2;

3. Play: the user plays with the synthesiser using the input device and the mapping proposed by the
agent;

4. Human feedback: the user gives feedback to the agent.

Steps 3 and 4 are repeated until the user has found as many interesting motion-sound mappings as they
like. The following subsections will describe the system architecture and a typical workflow.

It is worth noting that, differently from most IML applications for gestural interaction, there is not a
gesture design step during which the performer records some sample sensor data for training the system.3
This is perhaps one of the most obvious differences between the IML and AIML paradigms. In an AIML
workflow, the sample sensor data used for training the model is provided by the artificial agent, whereas
the user gives feedback to the agent interactively while playing the resulting gesture-sound mappings.

System Architecture

Human feedback
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features
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Neural network 
regression model

Synthesis 
params Synthesiser

Sound

Training 
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Figure 1: System architecture

The architecture of the system is schematised in Fig 1.

The movements of the human performer are captured by means of an input device. In the first prototype
of the system we used the built-in accelerometers of a smartphone, while in a second version we captured
gesture using a Myo sensor armband, which provides 8-channel electromyogram (EMG) muscle sensing
and a 9-axis inertial measurement unit (IMU).

The motion features4 extracted by the raw sensor data are stored in a vector and sent to a regression model
created using a neural network. This was implemented in Max5 using the rapidmax object (Parke-Wolfe
et al., 2019), an external built using RapidLib6 (Zbyszyński et al., 2017), a set of software libraries for
interactive machine learning applications in the style of Wekinator (Fiebrink et al., 2009). These features

2If no feedback was previously given, the agent starts with a random mapping.
3For an example of gesture design in an IML workflow, see the study by Tanaka et al. (2019) carried out within the

BioMusic project.
4The motion features may be a set of descriptors derived from the raw data and/or the raw data itself, depending on the

hardware used and how the system architecture is implemented.
5http://cycling74.com/products/max/
6www.rapidmixapi.com
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also represent the dimensions of the environment in which the artificial agent operates. By exploring this
feature space following the user’s feedback, the agent proposes a set of motion features to be paired with
the synthesis parameters defined by the user during the sound design step. This becomes the dataset
used to train the neural network. The resulting regression model maps the incoming sensor data to sound
synthesis parameters.

For the agent, we used Co-Explorer7, a Python deep reinforcement learning agent implementation by
Scurto et al. (2019). Bidirectional communication between the agent and Max is done through Open
Sound Control (Wright, 2005). Human feedback to the agent is given via a custom touch interface, which
was designed in TouchOSC8 and implemented on an iPhone (see Fig. 2).

Figure 2: The interface for playing the synthesiser and give feedback to the artificial agent.

For the first prototype of the system, we used a sample-based synthesiser to manipulate an audio file stored
in a buffer. A second version of the system was instead built around the synthesiser used for the study by
Zbyszynski et al. (2019), which implements corpus-based concatenative synthesis using MuBu9 CataRT
Max objects. Interaction with corpus-based concatenative synthesis was further refined by adopting the
method based on self-organising maps by Margraf (2019). This method was then implemented in the
piece “You have a new memory” (Visi, 2020).

Workflow
We will now describe more in detail the four main steps of the interactive collaboration between the
human performer and the artificial agent. The whole workflow is schematised in Fig. 3.

1. Sound design

In this first step, the user defines a number of sounds by manipulating a set of synthesis parameters. This
process may differ depending on the synthesiser chosen and which synthesis parameters are exposed to
the user in this step. In the first version of the system using the sample-based synthesiser, the sounds are
defined by manipulating six parameters (playback speed, pitch shift, start time, duration of the sample
selection, filter cutoff frequency and resonance). Here, the user defines the parameters of four sounds that
will be used to train a neural network in step 2 and perform regression in step 3. The sounds designed in
the sound design step will thus act as timbral anchor points that define a space for interpolation and
extrapolation of new sounds.

7https://github.com/Ircam-RnD/coexplorer
8https://hexler.net/products/touchosc
9https://forumnet.ircam.fr/product/mubu-en/
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Figure 3: The prototypical assisted interactive machine learning workflow.

2. Agent exploration

The dimensions of the environment explored by the agent are defined by the motion features extracted
from the raw sensor data for each of the sound presets. Thus, at the end of the exploration step, the agent
returns a vector with a set of input features for each of the sound synthesis parameters sets defined in the
sound design step. This means that in the case of the version of the system using a 2D accelerometer, the
agent will return four 2D vectors. These will be automatically paired with the synthesis parameters to
train a neural network and create a regression model, which will be used in the following step to map live
incoming sensor data to sound synthesis.

3. Play

In this step, the user is free to play with and explore the resulting gesture-sound mapping for however
long they like. Given that the regression models allow both interpolation and extrapolation of the input
sound synthesis data, this step also allows to explore the timbral possibilities of the synthesiser while
playing the mapping.

In our prototype, the big button in the touch interface (shown in Fig. 2) triggers the amplitude envelope
of the synth, while the movements tracked by the accelerometer axes are used to modulate the synthesis
parameters through the mapping implemented in the regression model.

4. Human feedback

After playing with the mapping, the user can give feedback to the artificial agent through the touch
interface (Fig. 2). We adopted the concepts of guiding feedback and zone feedback implemented in the
agent designed by Scurto et al. (2019). Guiding feedback is a binary evaluation of the actions performed
by the agent, or the direction of its exploration of the feature space. Zone feedback is instead an evaluation
of the area of the feature space the agent is currently exploring. For example, a negative guiding feedback
would change the direction of the agent’s trajectory in the feature space, whereas a negative zone feedback
would immediately transfer the agent to a different region of the space.

In our system, the user can give positive or negative guiding feedback to the agent about the proposed
mapping. This feedback guides the direction of the next explorations of the feature space, and thus
affects the next mappings proposed by the agent. In addition, the user can tell the agent to move to a
different area of the feature space by using the EXPLORE button. This corresponds to a negative zone
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feedback, and will likely result in a new mapping that is considerably different from the previous one. In
practice, this could be useful for trying something new once one is satisfied with the mappings proposed
by the agent after a few guiding feedback iterations. In fact, whereas negative guiding feedback results in
adjustments to the mappings currently being proposed by the agent, negative zone feedback triggers the
exploration of a new area of the feature space, thus exploring new mapping possibilities. Users can save
mappings to JSON files. Mappings can then be retrieved later for performance or as mapping material to
be further refined using other approaches.

Early User Feedback
We showed the first prototype of the system during an informal demo at the Human Data Interaction
(HDI) workshop Art, AI-created content, & industrial/cultural effects.10 There, attendees were explained
the purpose of the system and showed how to interact with the artificial agent. The audio loaded on
the synthesiser was constituted by six samples, each lasting one second and taken from a different sound
source: speech, a field recording in a train station, a drum beat, a string ensemble, a whispering voice,
and the sound of glass breaking. This was done in order to have some timbre variety when playing with
the synth. The samples were the same for all the participants, and so were the synthesis parameters sets,
so the demo focused on steps 2 to 4 of the workflow.

We collected feedback from 8 workshop attendees that tried the system in the form of a questionnaire.
All the participants reported that they are active in one or more artistic discipline among music, visual
arts, and performance. Additionally, three of them reported that they are developers and two of them
academics. The questionnaire included five questions that the participants could answer using a five-level
Likert scale where 1 corresponded to “not at all/strongly disagree” and 5 “yes very much/strongly agree”.
The questions were:

• Q1: Did the artificial assistant help you discover the sounds the synthesiser can make?

• Q2: Did the feedback you gave to the artificial assistant help obtain sound interactions you liked
better?

• Q3: Did the artificial assistant surprise you with sound interactions that you weren’t expecting but
that you found interesting?

• Q4: If you’re a practicing musician, do you see yourself using similar AI-based procedures to explore
the possibility of your musical tools? (optional)

• Q5: Was it fun to play with the artificial assistant?

We report the results in the bar chart in Fig.4.
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Figure 4: Responses to the feedback questionnaire. Answers were given using a ve-level Likert scale where
1 corresponded to “not at all/strongly disagree” and 5 “yes very much/strongly agree.”

In addition, participants were allowed to leave comments about their experience with the system. Four
participant included some comments, two of them reported that they would have liked to have had access
to a wider palette of sounds, one that the system was very responsive, and another one reported that
they weren’t sure about what the system was doing.

10The workshop took place on 20th September 2019 at Music Hackspace – Somerset House Studios in London, UK:
https://hdi-network.org/workshop-art-ai-created-content-industrial-cultural-effects/
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Discussion
The feedback we collected from this small group of experienced participants (all of them reported being
involved in the arts while a few were also developers and academics) led us to make useful considerations
regarding the design of the first prototype, as well as on the development of AIML as a general interaction
design paradigm.

Firstly, despite scoring high on all the other questions, users entered relatively low scores for the question
regarding the efficacy of the feedback given to the agent. This may indicate that the mappings proposed
by the agent were fun to play and allowed the participants to explore the different ways of interacting
with the synth, yet the immediate effects of giving positive or negative feedback to the agent were not
always clear. As also noted by Scurto et al. (2019), for the agent to learn quickly from a small amount
of feedback data provided by the users is a challenge. Despite the improved performance of recent
reinforcement learning algorithms making use of deep neural networks, the system requires multiple
iterations to learn from the user’s feedback, especially when dealing with high-dimensional feature spaces.
This is particularly challenging to the context of a short demo where participants spent a short amount of
time playing with the system. The guiding feedback given to the agent is binary: yes or no. The proposed
gestural interactions with the synth are often characterised by complex timbral articulations. Several
participants suggested that they would have liked to be able to tell the agent what they liked about
the mapping. This suggests that a more sophisticated way of giving feedback to the agent might be a
useful feature of an AIML system. However, other participants appreciated the immediacy and simplicity
of a binary feedback design, which allowed to quickly try several mappings and save those considered
useful for later use. This brings to mind the design dilemma often discussed in music technology and
other creative domains: sophistication and access to a high number of features vs simplicity and designed
limits. The topic has been recently addressed also by the multimedia artist and music technologist Robert
Henke, who discussed how the different mindsets and priorities of composers, performers, and software
developers affect the design of musical tools, and described how he sees constraints and limitations as
something useful in his own creative practice (Henke, 2016). This is indeed a wider, highly subjective
topic of discussion, and addressing it is beyond the scope of this paper. It is however important to keep
such issues in mind when developing the AIML paradigm further, given that what might be useful to
improve the capabilities of an AIML system might not be what makes it more valuable in the context
of actual music creation. This became more evident when the system was used by the first author for
the development of the multimedia performance piece “You have a new memory” (Visi, 2020). Even
though – compared to system shown in the demo – the sound synthesis engine used in this case was more
sophisticated, the mappings obtained by interacting with the agent through the workflow described above
resulted in a rewarding creative process. It is felt that more ways of giving feedback to the agent might
have shifted the focus away from attentive listening and exploration of the sonic interactions. This is,
once again, highly subjective and depends very much on one’s creative goals.

Higher feedback on Q1 and Q3 suggest that the system has been perceived as a useful tool for exploration
and discovery. A defining characteristic of the architecture we propose is that the sound synthesis space is
shaped by the presets defined by the user, while the agent provides mappings between that and the input
motion features. Yet, even though the synthesis anchor points are defined explicitly, the articulations
between them can be very diverse and complex. Exploring such articulations through the mappings
proposed by the agent allows for the discovery of sonic gestures within the synthesis space defined by
the anchor points. In other words, it is like discovering different ways of performing the same sound
synthesis material. We argue this has considerable musical usefulness. Varying the same source material –
whether notes or synthesis parameters – is a well-established process in music making, and it is also at
the centre of several other implementations of machine learning in music production, such as for example
the Magenta Studio11 plugins.

The approach we described differs from the typical IML workflow as it does not include a gesture design
phase, and also differs from the study by Scurto et al. (2019) since the agent does not explore the sound
synthesis parameter space. This does not mean that the approaches cannot be combined. Automated
sound synthesis parameter exploration techniques can potentially be employed in the sound design
phase, while mappings saved while interacting with the agent can be recalled and improved by providing
additional input sample data as it is typical in the IML workflow. We therefore see AIML as a way of
extending and aiding established gestural interaction design practices.

11https://magenta.tensorflow.org/studio

7

https://magenta.tensorflow.org/studio


Conclusions and Future Work
We presented an interaction design approach that uses artificial agents and machine learning to in-
teractively explore mappings between gestural input and sound synthesis. We refer to this model as
Assisted Interactive Machine Learning. We implemented this paradigm in a prototype system that
uses reinforcement learning and linear regression to obtain mappings between accelerometer data and a
sample-based synthesiser while playing the instrument. The feedback given to the artificial agent allows
to guide its exploration, thus affecting the mappings it proposes after each iteration.

After testing the prototype system internally, presenting it to an expert audience to collect feedback, and
employing for the development of a multimedia performance piece, we argue that this model constitutes a
useful creative tool for discovering musical interactions while actually playing the instrument. Moreover,
AIML can in principle be combined with established interaction design and parameter exploration
techniques, and thus be included easily in the workflow of practicing musicians and multimedia artists.

As discussed in the previous section, currently the guiding feedback given by the user to the audience is a
simple binary response on the last proposed mapping. Even though the simplicity of the current version
allows for a quick and intuitive interaction with the agent, a more sophisticated way of giving feedback
may lead to a more rewarding experience with the system. For instance, the agent is currently agnostic of
the sounds designed by the user and the output sound made while performing. By implementing machine
listening and audio feature extraction techniques, the user could potentially give feedback to the agent
regarding some basic timbral features of the output sound, similarly to systems that use audio analysis
and genetic algorithms to define a target sound and program a synthesiser automatically (Dahlstedt,
2001; Yee-King et al., 2018). This way, the feedback given to the agent would include different weights
for different timbral features. Additionally, the architecture of the current AIML prototype allows for
static regression (Tanaka et al., 2019) and not for temporal modelling, which would allow interactions
with more diverse dynamics.

Despite its limitations, it is worth keeping in mind that the simplicity of the current version affords a
quick, fun workflow that was perceived as useful from the start, and that led to a rewarding creative
process during the development “You have a new memory” (Visi, 2020). For the purpose of gathering
further user feedback data, and to study how musicians would use an AIML system in their actual
practice, we are aiming at carrying out a longitudinal study with a small group of professional musicians.
This would allow us to situate the development of AIML systems in broader musical contexts, and thus
gain insight that would be very difficult to obtain otherwise.

Grounding the research in music practice will also help with studying different ways of giving feedback to
the agent and address other open design questions. For this reason, we are aiming at designing an AIML
instrument using a specific input device and synthesis engine. A full system can be consistently studied
and iteratively improved, by, for example, select the synthesis parameters that are exposed to the agent,
try different ways of giving feedback and include other interaction design paradigms in the workflow to
refine the mappings proposed by the agent. As with the longitudinal study, this will allow to spend more
time with a consistent system and expose its affordances and constraints more clearly, and thus lead to
a better understanding of the ergodynamics Magnusson (2019) of AIML as a sonic interaction design
paradigm situated in music practice.
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