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Abstract. The development of musical interfaces has moved from static to malleable, where the
interaction mode can be designed by the user. However, the user still has to specify which input
parameters to adjust, and inherently how it affects the sound generated. We propose a novel way to
learn mappings from movements to sound generation parameters, in an explorative way. The goal is to
make the user interface evolve with the user, creating a unique, tailor made interaction mode with the
instrument.
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Purpose of the research and its importance to the field
The possibility to write your own instruments in open source software is a major enabler of creativity.
There also exists a large variety of input devices that can be used for physical interaction with digital
instruments. Still, these mappings have to be defined by the user. Our approach is to learn these without
having to specify anything else than a reward signal to the mappings generated. These mappings are not
static, they evolve with the user. This can free up the whole interaction design process by making it an
inherent part of interacting with the instrument. The cost will be the time spent learning and evolving
with the instrument itself.

Brief survey of background and related work
The system has some functional similarities to the Gesture Variation Follower (Caramiaux et. al. 2014)
in that it allows scaling and time variations to be induced from the performed deviations from learned
gestures, and that these variations are used to align the mapping from input to output. However, the
mappings from gestural input to sound synthesis parameters is done in an auto-adaptive and generative
manner in our system, based on analysis of the gestural qualities in the input. The algorithm will attempt
to produce an output sound that preserves the gestural qualities of the input without prior knowledge or
the use of audio samples. Gesture to audio interfaces has a long history, with one seminal work being
“The Hands” (Waisvisz 1984), with a plethora of variations and methods shown in Wanderley and Depalle
(2004), and a more recent artistic example the Strophonion (Nowitz 2019).

To seamlessly morph between sounds using neural networks has received attention lately, in particular
with the WaveNet-based approach by Engel et al. (2017). However, their work was on morphing between
instruments by learning from raw waveforms, and not being linked to another modality. The introduction
of generative adversarial networks (GANs) by Goodfellow (2014) has also seen applications within the
audio domain, namely by creating more sophisticated audio by generating a lot of the audio properties
(e.g. log-magnitude spectrograms) through the GAN approach (Engel et al, 2019). This mixture of neural
networks and raw audio generation is hampered by computing power, but nevertheless interesting for
mimicking real sounds - however, in this work we focus more on the creative applications that arise
through synthesis.
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Description of the proposed approach
Pseudocode is shown in Listing 1, and a simplified signal flow chart shown in figure 1.

user i n d i c a t e s the s t a r t and stop o f a ge s tu r e

i f g e s tu r e i s new :
l e a rn an i n t e r n a l r ep r e s en t a t i on o f the ge s tu r e

whi l e user i s unhappy :
c r e a t e a mapping from ges tu r e to sound

l ea rn c o r r e l a t i o n between ge s tu r e f e a t u r e s and audio f e a t u r e s
l e a rn a e s t h e t i c p r e f e r e n c e s o f user

i f g e s tu r e i s known :
c r e a t e sound from mappings

Listing 1: Overall algorithm, that runs in a global loop.

Figure 1: Simplified signal flow of the system

The user must provide three kinds of feedback to the system: 1) deviation tolerance (how much variation
from a learned gesture is needed to trigger the learning of a new gesture), 2) a“reject” message for a
mapping proposal from the system, and 3) a way to indicate the start and stop of a gesture.

The deviation tolerance can be set as a numeric value, or we can allow the system to use an adaptive
strategy based on distance between the gestures already learned. The deviation tolerance can also be
measured by the amount of prediction errors done by the already trained neural networks. A combination
of these might also be used, where the user also sets an absolute minimum deviation needed. This could
help prevent the system from entering learn mode when a large number of gestures have been learned
and their representations might start to overlap. In any case, this is a value set before starting to interact
with the system, and will be changed rather seldomly (if at all).

The reject message can be implemented as a simple button. If the system proposes a mapping that results
in a sound the user does not want, the mapping can be rejected. If the system is in learn mode, it will
then generate new mapping. If the user is in perform mode, the system will then load the next best
mapping based on similarity to the recently perceived gesture. All these signals will contribute to the
learning of the aesthetic preferences of the user.

The user will also provide a way to indicate what constitutes a gesture, by means of a “record” button or
similar. Ideally, this is not needed - the system should be available to automatically segment gestures
into new or known. However, for the first iteration this will be done very explicitly in order to ensure
that the user has a firm grasp of what the system is actually dealing with.
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Learn mode
The system starts in a complete “tabula rasa” state, and has to build up a library of movements and their
mappings to sound parameters. The system will be guided in this phase through a simple interaction
mechanism with the user. Upon completion of a specific sequence of movements, the system will then first
learn an internal representation of the movement. This is typically done by performing a 1D convolution
over all the axes of the input signal. A recurrent neural network can also be used, like a bidirectional
LSTM. However, convolution neural networks are faster to train and more robust to noisy sequences,
since they are translation invariant with respect to the input signal. The neural network will perform
classic time series modelling, i.e. predicting the next time step for the input signal, which is important
for its use in performance mode. The library will grow with one such network for each new movement.
We will experiment with consolidating similar movements into one neural network, and if the recurrence
of “reject” messages should lead to the deletion of such neural networks.

The crucial part of constructing the mapping from movement to sound parameters happens in this step:
at the end of the sequence, the system will have an internal state of the neural network that will be used
to generate sound parameter settings. It will also analyze the gestural qualities of the input signal. Then
a random mapping from input signal to audio synthesis parameters will be initialized. At this stage the
system will be ready to synthesize a sound corresponding to the input signal. It will then analyze the
audio features of this synthesized sound, and compare the gestural qualities (smoothness, acceleration,
transients, etc.) of the input to the output (synthesized sound). We assume that this initial mapping will
give little correlation between input and output. The task of the system at this stage is to optimize this
correlation, by creating a hetero-associative memory that creates a mapping between modalities. After
optimization, the system will produce a sound that has some spectromorphological resemblance to the
input signal. We still don’t know if this sound is desirable by the performer, so this triggers the next step:

The evaluation of the suitability of generated mappings will be generated by another neural network,
which has the role of learning the aesthetic preferences of the user. At first, the system will not know
what pleases the end user, so this network will also start in a completely random state. The guidance
from the user will be a binary value of 0 (reject) or 1 (accept). In the case of reject, the system continues
to try out suggestions (i.e. mappings) until the user is happy. This aesthetic module will use all of these
feedback signals and their configurations as training data to improve its model1.

In this way, the library of movement neural networks will grow over time, as well as the aesthetic neural
network will become more sophisticated. The goal of the aesthetic neural network is to influence the
creation of random mappings, i.e. they will be “less random” and more in accordance to what the user
prefers.

This process will require some heavy processing, and it will run in a parallel processs, so it does not
interfere with performance.

Perform mode
When the system is in perform mode, it will continuously predict the next movement from all the networks
stored in its movement library. Based on how well these predictions are, the sound generation patterns
from the given module will get more influence over the total setting of sound parameters, like a continuous
gate. The goal is that this will enable a fluid mapping from movement patterns into sound. By making
up combinations of different movement patterns, the sound generated should have some of the similar
qualities, however we suspect these will be more unpredictable than a mere linear combination. This can
be a source of frustration or excitement.

Independence from application environment
The methods and the system proposed in this paper are independent of the type of gesture sensor, and
also independent from the choice of synthesizer or sound producing engine. The system will adapt to the
set of input parameters that it is trained on, and as such can be used with a variety of gesture sensing
technologies or other input devices. Similarly, it will adapt to the output parameter set available in the
specific synthesizer used in training. Due to the fact that optimization takes place by feature analysis of
the sound produced by the synthesizer, the specifications and implementation details of the synthesizer

1Reinforcement learning could also be applied in this situation, but given its need for extreme amounts of training data,
we will start with supervised learning.
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becomes irrelevant to the mapping system. There are however, two requirements to the synthesizer: it
must have parametric control that can shape the resulting timbre, and for practical reasons, it must be
able to render sound in an offline fashion. During the learning phase, the system will iteratively suggest
new mappings and test them on the synthesizer. Due to the large number of iterations, the process would
be very slow with realtime-only sound production devices. When rendering sound offline, this process can
be sped up and automated with parallelization such that the learning process can be accomplished as
quickly as computing resources permits.

Expected contributions
The system will learn predictions of what the user likes and dislikes. Furthermore, the system will also
create interpolations between different points in the high-dimensional space that embeds what the user
prefers, and use these to suggest novel parameter mappings to the user. Such interpolations are most
likely not linear, so a deep learning model will be a suitable candidate to learn this concept. This can be
thought of as a crude form for emotional intelligence.

The generative aspect of the work will contribute to the field of computational creativity. It will start
out in a random fashion, without any a priori knowledge of what the user likes. The challenge will be
to decide how this exploration will be conducted, since the user experience should not be like that of a
random walk for a long period of time - instead as a gradual development of a mutual vocabulary between
the system and the user.

Progress towards goals
The work is conceptual, with ideas for how to implement such features and what the functionalities
are. The authors actively use this colloquium paper to seek feedback of proposed methodology and
functionality.

Additional Information
The submission of the final version of the article constitutes an authorization for its publishing in the
International Conference on Live Interfaces 2020 proceedings.
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